
What is JCU?

The Joint Communications Unit (JCU) is a technical unit of the United States Special Operations Command charged to
standardize and ensure interoperability of communication procedures and equipment of the Joint Special Operations
Command and its subordinate units.

The JCU was activated at Ft. Bragg, NC in 1980, after the failure of Operation Eagle Claw. The JCU has earned the reputation
of "DoD's Finest Communicators”.

Department of Defense
Joint Communications Unit (JCU)

I was asked to share the story of the Joint Communications Unit’s (JCU) automation journey, and I am happy to do that.
I really enjoy telling the story and hope that we are able to help other elements in the DoD accomplish some of the

things that we have within JCU.

First, I would like to reference the JCU mission statement to describe what JCU is and what they are responsible for.

Copyright © 2024 | Network to Code, LLC | networktocode.com

Why Automation?

There were two primary reasons why we sought out
automation for JCU. The team I was a part of was
responsible for ensuring network configurations were
compliant and standard across a number of
communication packages. The issue with the compliance
and standardization process was the lack of defined
compliance and standards. We did not have a version-
controlled network configuration, and we had massive
configuration drift on the network devices. We thrived on
just making it work, which led at times, to hours of
troubleshooting equipment. This process of att﻿empting to
baseline these communication packages took up to a week
at a time, and at the end they just worked, and there was no
standardization across the systems.

The second reason we sought automation was the
creation of the Modular Family of Systems (MFS). This
new suite of expeditionary communication packages was
designed to replace all of the existing equipment JCU used
for tactical communications. The initial configuration plan
used many Excel spreadsheets as an IPAM solution for
multiple enclaves
(separate network classifications) and a Word document
for each MFS Type (Lite, Medium, Heavy). Due to the
modular nature and the requirement to support any
possible scenario, the Word documents were
approximately 27 pages long for some network enclaves
and device types.

Customer Story

This story was submitted by Derek Howard, Senior Technical Advisor at the JCU.

Automation Tool

A combination of Ansible, GitLab and Jinja2 became our solution to provide a standardized, configured and working device.
We took the Word documents of network configurations and separated the different sections into many Jinja2 templates
and added a bunch of logic to meet the needs of each MFS type.

Copyright © 2024 | Network to Code, LLC | networktocode.com

What is MFS?

MFS is the suite of expeditionary communications packages that JCU needs to utilize in order to meet their communications
requirements.

The MFS suite consists of Lite, Medium, and Heavy variants that all provide the same capabilities from a configuration
perspective, but support different numbers of users.
The components of the MFS suite include the Cisco ESR5915, ESR6300, CSR1000V, CSR8000V, and ESS3300.

The components were designed to be modular in nature and able to be quickly swapped in and out using embedded event
manager scripts to create dynamic connections between routers.

My team had to configure and field a
large number of these systems very
quickly and guarantee that they would
work. After building that first batch
manually and going through the painful
process of populating a Word
document with the correct hostnames,
subnets, IPs, etc. that make up the host
variables of a specific device, and
encountering many fat-finger mistakes,
we quickly realized we needed to come
up with a better process. It took us over
three weeks to configure and test the
first set of equipment.

Copyright © 2024 | Network to Code, LLC | networktocode.com

IP management and host variables were moved to YAML files for each kit, which contained the variables and IP assignments
for each kit type.

A static host file using the ini format was created to manage the connection variables and define host type and primary IP of
each device.

The automation provided the solution we were looking for and allowed us to begin configuring and fielding MFS packages.
Once the initial concept had been fleshed out and tested, we moved the Ansible playbooks and GitLab project to AWX in
order to provide a user interface to request network configurations for our users.

Copyright © 2024 | Network to Code, LLC | networktocode.com

Why a Source of Truth?

We knew early on that using a static inventory and
individual YAML files for host variables was never going to
scale for us. It was very annoying to add or make a change
to the inventory or YAML files. A branch needed to be
created followed by a merge request before AWX could
sync the project and finally create and deliver a config to a
network device. If a mistake was made, this process would
have to be repeated and take even longer. We wanted a
smooth, quick, and streamlined process for adding and
making changes to devices that would have an immediate
effect when generating configurations.

After a lot of searching we found that a network source of
truth (SOT) could solve both of the issues we were having
with our inventory and our host variables. We currently use
Nautobot as our network source of truth. Nautobot had a
number of features that we thought could help us make
fast and scalable changes to our inventories like config
context and graphQL. Additionally the support from the
Network to Code Slack channel and optional training
available were very helpful for us.

We did some initial tests using Nautobot API calls for
device objects and config context for group variables that
did not scale for us; and as our device count grew, our
inventory got increasingly slower. We found that we were
pulling too much information from Nautobot.
We decided to make some changes to our group variable
structure and moved to using graphQL. We found that
using graphQL to query the exact information we needed
from Nautobot to generate a config, reduced our inventory
runtime from approximately 5 minutes to under 10
seconds.

Config Context gives us the ability to assign a variable to
an object as a host variable in order to overwrite a group
variable. This gave us some scalability in supporting more
than just ourselves when it came to generating network
configurations. The screenshot below shows the usage of
config context schema and config context to allow users
to overwrite a dns_server host variable. Config context
schema ensures the user enters data in config context
correctly so there will be no errors when generating device
configurations.

Copyright © 2024 | Network to Code, LLC | networktocode.com

Knowing that PKI authentication was going to be a requirement at some point, we wanted a solution that would integrate
with Keycloak or other Identity Management solutions to give us two-factor authentication options.

We ended up creating a Python dynamic inventory to query Nautobot. This inventory would run every time a config
generation request was made inside of AWX, ensuring that the config would contain the most recent changes from our
preferred source of truth, Nautobot.query.

The script would make an API call to Nautobot and return the results of a preconfigured graphQL query.

The results of the graphQL query are then parsed in the rest of the dynamic inventory and put into a format that AWX is able
to consume.

Copyright © 2024 | Network to Code, LLC | networktocode.com

We also used the job feature to build a custom Python job that allowed us to add and/or change the device type of a tenant.
This made it very easy for us to life cycle the Cisco ESR5915 with the ESR6300. Users were able to select the tenant object
they wanted to change and then what they wanted to change it to. The next time they generated configurations for that
tenant object, Ansible would have the latest information from Nautobot.
This screenshot shows that KL001 is currently a medium_v2, which is a Cisco 6300. If we wanted to change the device
types of that tenant object inside of Nautobot manually we would need to delete all of the devices and re-create them from
a new device type, while assigning IPs to interfaces and assigning primary IPs to the device and changing the hostname.

The final result of the job will be new devices within the existing tenant KL001 with updated information.

Using the custom jobs option in Nautobot we are able to allow our users to run a single job that accomplishes all of the
necessary changes in Nautobot to generate a new standardized config for that device type.

Copyright © 2024 | Network to Code, LLC | networktocode.com

We provide a dictionary of options for the dropdown as a
selection of choices, and then the rest of the jobs script
deletes and creates the object based on what we deem the
desired state of that device type.

Learning, Scaling, and Improving

Over time and with increased experience, we have made
many changes to the automation process to include more
complex logic in the Jinja2 templates, template inheritance
with blocks, and CI/CD pipelines for testing network
configurations to name a few. The process we use for
automating network configurations continues to grow and
improve as we learn more and gain experience.

Using a network source of truth like Nautobot increases
the speed and flexibility of your automation. It builds trust
and allows for visibility into the desired state of network
devices for all users. If used correctly it can correct the
state of network devices and build a safe and secure
environment for network operations.

Final Workflow

The final workflow of our automation process can be seen
below, excluding the CI/CD pipelines used to validate Jinja
syntax and network configurations, prior to allowing a
merge request to succeed.

Copyright © 2024 | Network to Code, LLC | networktocode.com

What else have we done and what else is on the roadmap?

SSL Cert tracker (Nautobot Plugin)
System baseline tracker (Nautobot Plugin)
Domain Controller Replication (External powershell script)
Sites and services standardization
Automatic creation of A Records

I get asked a lot about how we were able to do this.

How did we get the time and skills?
How are we maintaining those skills or training new people that come into the organization?

Our leadership team is very supportive and encourages the teams within the organization to find new and more efficient
ways to do business.
We are given time and space to work through difficult problem sets. We have dedicated team members who want to solve
problems and enjoy learning new things.

We developed a four-month platform engineer onboarding course that runs twice a year. All qualified new hires that are
coming to the unit go through this course and learn GitLab, Ansible, Jinja, network source of truth, Django, and Kubernetes.

If you are interested in coming to JCU to work on similar projects like Automation, Coding, Edge Computing, or Kubernetes,
please go to https://www,jcu.mil and fill out an application.

https://www.jcu.mil/join/

