
Department of Defense
Joint Communications Unit (JCU)
Leverages Nautobot® for Network
Source of Truth and Automation Needs

The Challenge: Network
Configuration Compliance and
Standardization in a Highly
Dynamic Environment

Imagine picking up your entire network, flying it to a new
location, setting it up for new users, integrating new
equipment, and operating it to meet new mission
objectives. This is the role the JCU faces every day.

JCU faced two major challenges that necessitated a shift
toward network automation.

First, there was a lack of defined network configuration
standards. The prevailing method of configuring devices
relied on a relentless drive to get the job done.
Unfortunately, this led to excessive configuration drift and
hours-long troubleshooting processes.

The second challenge emerged with the introduction of the
Modular Family of Systems (MFS), a new suite of
expeditionary communication packages. The modular
nature of MFS, the requirement to support any possible
scenario, and manual configuration processes led to
excessive documentation and time-consuming error-prone
executions. As a result, the first set of equipment took over
three weeks to configure and test.

The JCU team initially turned to Ansible, GitLab, and Jinja2
to standardize and configure deployments. This solution
proved more successful; however, the static inventory and
individual YAML files were not scalable. The team needed a
smooth, quick, and streamlined process for adding devices
and making changes.

The Customer: Department of
Defense Joint
Communications Unit (JCU)

As the premier technical unit within the United
States Special Operations Command, the Joint
Communications Unit (JCU) plays a crucial role
in standardizing and ensuring interoperability of
communication procedures and equipment for
the Joint Special Operations Command.

The JCU, activated in 1980, has earned the
reputation of "DoD's Finest Communicators" due
to its commitment to excellence.

Copyright © 2024 | Network to Code, LLC | networktocode.com

 Case Study

Looking Ahead: Evolving with
Network to Code Solutions

JCU's journey with automation didn't stop at Nautobot
implementation. Over time, the team has incorporated more
complex logic into Jinja2 templates, implemented template
inheritance, and introduced CI/CD pipelines for testing
network configurations. The team plans on incorporating
several Nautobot Plugins to streamline the deployment of
equipment. Additionally, the JCU has developed a four-
month platform engineer onboarding course, to ensure that
every team member is well-equipped to navigate the
NetDevOps landscape.

For a comprehensive look into how Nautobot is utilized to
deploy the world’s most critical equipment, we invite you to
read the report written by the team at JCU.

Access the full report here

Copyright © 2024 | Network to Code, LLC | networktocode.com

The Solution: Nautobot Source of
Truth & Automation

Recognizing the limitations of a static inventory and
individual YAML files, JCU sought a Network Source of
Truth (NSoT) with Nautobot.

Several features, including Config Context and GraphQL,
made it clear that Nautobot could solve these challenges.
Config Contexts allowed for dynamic and nuanced variable
assignment, and GraphQL expedited inventory generation.
The early successes Nautobot introduced built trust and
enhanced visibility into the desired state of network devices
for all users.

The Results: Increased Automation
Speed & Flexibility

Nautobot has proven to be the solution the JCU team was
looking for to increase the speed and flexibility of
automation.

Inventory Runtime Reduction

By optimizing Nautobot’s group variable structure and
leveraging GraphQL to query the exact information needed
from Nautobot, JCU improved the inventory runtime from 5
minutes to under 10 seconds.

Network Configuration Scalability

Config Context gave the JCU greater flexibility in generating
configurations by empowering users to replace default
group variables with their own validated variables. This
enabled the users to quickly and safely change the default
behavior of network equipment.

Dynamic Inventory for Nautobot

The team implemented a Python script to dynamically query
Nautobot each time AWX generated configurations. This
ensured that configurations would always contain the most
recent changes represented in the NSoT.

Standardized Device Configuration

A custom Python job in Nautobot facilitates easy device-
type changes for equipment, simplifying the lifecycle
management of devices. Instead of manually deleting and
re-creating these records, users run a job that accomplishes
the necessary changes—resulting in new records with
standardized device configurations.

https://go.networktocode.com/hubfs/Case_Studies/JCU_Story.pdf

